Wood, Glues and Tools for Paddle Making
Riverswest Small Craft Center’s
Forum on Canoe and Kayak Paddles, Paddling and Paddle Making
Randal Torgerson
January 30th, 2010

Wood for Making Paddles

Which wood for paddles?

<table>
<thead>
<tr>
<th>Species</th>
<th>Weight lb./cu ft.*</th>
<th>Strength</th>
<th>Abrasion Resistance</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ash</td>
<td>37.5</td>
<td>High</td>
<td>High</td>
<td>Best wood for rugged paddles. Tools must be sharp. Watch gain direction.</td>
</tr>
<tr>
<td>Douglas Fir</td>
<td>31.2</td>
<td>High</td>
<td>Medium</td>
<td>Readily available in clear lengths. Needs sharp tools to avoid tear out. Easy to work with.</td>
</tr>
<tr>
<td>Silver Maple</td>
<td>29.3</td>
<td>Medium</td>
<td>Medium</td>
<td>Good compromise between strength and lightness. Best for light use paddles. Easy on tools.</td>
</tr>
<tr>
<td>Port Orford Cedar</td>
<td>25.0</td>
<td>High</td>
<td>Medium</td>
<td>Hard to find in clear lengths. Easy on tools and has spicy smell.</td>
</tr>
<tr>
<td>Sitka Spruce</td>
<td>22.0</td>
<td>Medium</td>
<td>Low</td>
<td>Clear pieces are scarce and expensive. A compromise with more lightness and less strength. Best for light use paddles.</td>
</tr>
<tr>
<td>Western White Pine</td>
<td>21.8</td>
<td>Low</td>
<td>Low</td>
<td>A cheap wood that is easy on tools. Use sharp tools. For light duty use.</td>
</tr>
<tr>
<td>Western Red Cedar</td>
<td>19.3</td>
<td>Low</td>
<td>Low</td>
<td>Good choice for touring paddles. Readily available in clear lengths. Easy on tools and easy to work with.</td>
</tr>
</tbody>
</table>

*At 12% moisture content, from USDA Wood Handbook

Flexibility
Absorbs shock
Easier on joints
Loss of efficiency

Weight
Weight is very important if touring.
Weight is less important for white water and rugged use.

Strength
The use of stronger woods can result in thinner paddles.
Match the wood strength to the application.

Abrasion Resistance
Shallow paddling can damage a softwood paddle very quickly.

Where to find wood
Don't spend more that $20
One Piece Paddle

Does not rely on glue
Works best with green wood or air dried wood.
Kiln dried lumber can be too dry and have hidden defects.

Laminated Paddle

Requires gluing
Can be made from many pieces of lower quality wood
Can look very good
Can select different woods for different parts of the paddle.

Glues for Making Paddles

<table>
<thead>
<tr>
<th>Type</th>
<th>Waterproof</th>
<th>Strength</th>
<th>Gap Filling</th>
<th>Cost</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resorcinol</td>
<td>100% Waterproof</td>
<td>High</td>
<td>No</td>
<td>$$$</td>
<td>The only true marine glue. Ugly red glue line. Needs high clamping pressure and 70 F</td>
</tr>
<tr>
<td>Marine Epoxy</td>
<td>Almost waterproof</td>
<td>High</td>
<td>Yes</td>
<td>$$$</td>
<td>Many types and temperature ranges. Avoid contact with skin and can be messy. Fails to bond to highly acidic woods or if over clamped.</td>
</tr>
<tr>
<td>3M 5200</td>
<td>Approved for underwater use</td>
<td>High</td>
<td>No</td>
<td>$$</td>
<td>Almost impossible to remove. Great where flexibility is needed.</td>
</tr>
<tr>
<td>Liquid Polyurethane</td>
<td>Not for continuous underwater use</td>
<td>High in tension, low in shear.</td>
<td>No</td>
<td>$</td>
<td>Some manufacturers claim waterproof. Can turn your skin black. Needs some clamping pressure. Can be used down to 40 F.</td>
</tr>
<tr>
<td>PL Premium Construction Adhesive</td>
<td>Not for continuous underwater use</td>
<td>High</td>
<td>Yes</td>
<td>$$</td>
<td>Used as joint filler in stitch and glue boats when encapsulated by epoxy.</td>
</tr>
<tr>
<td>Urea Formaldehyde Plastic Resin Glue</td>
<td>Not for continuous underwater use</td>
<td>High, can be brittle</td>
<td>No</td>
<td>$</td>
<td>Dry powder that you add water. Long open times and cleans up with water. Will not creep like PVA glues but needs 65 F to cure.</td>
</tr>
<tr>
<td>Titebond III</td>
<td>Not for continuous underwater use</td>
<td>High</td>
<td>No</td>
<td>$</td>
<td>Cleans up with water. Can creep years after setup. Can be used down to 55F. Needs some clamping pressure.</td>
</tr>
</tbody>
</table>
Tools for Making Paddles

Basic Tools
Pencil, straightedge, tape measure, combination square, clamps, safety glasses, hearing protection.

Power Tools
Table saw, band saw, planer, jointer. All available at the RiversWest boat shop.

Specialty Tools
- Spoke shaves -- Stanley 12-951 or 12-064
- Cabinet scrapers
- Low angle block plane -- Stanley No. 60-1/2
- Smoothing plane -- Stanley No. 4 or No. 5
- Drawknife

Homemade tools
- Spar or 8-siding gauge

Links

Wood
- Crosscut Hardwoods. http://www.crosscuthardwoods.com Every type of hardwood, softwood and plywoods

Glues
- Bob Smalser articles http://www.woodcentral.com/cgi-bin/articles.pl#smalser

Tools
- Bob Smalser articles http://www.woodcentral.com/cgi-bin/articles.pl#smalser
- Cian Perez collection of links to interesting articles http://www.cianperez.com/Wood/Wood_home.htm
- Brent's Sharpening Pages http://www3.telus.net/BrentBeach/Sharpen/index.html
Bob Smalser's General Notes on Glues and Goos

Resorcinol: The marine standard. If you can get 70 degrees F or higher for an overnight cure and consistent and high clamping pressure with no gaps, you won’t go wrong using it. (Cover with an electric blanket to be sure.) Likes wood at 10-15% EMC, according to Navy tests. Long open time. Repairable with epoxy. Ugly red glue line.

Marine Epoxy: The repair and restoration standard. Bonds well to a wide variety of materials, and usable in almost all flexibility and temperature conditions. Needs no clamping pressure, only contact…fills gaps well. Likes wood below 12% EMC. Repairable with itself, joints can sometimes be broken apart for repair with using heat. Clear glue line and can be dyed to match the wood. Controllable open time with different hardeners. Slightly permeable to water vapor and there are reports of failures in fully saturated wood and with White Oak. Very sensitive to UV, requiring protection…..and easy to overclamp when pulling in thick wood or imperfect joints.

3M 5200: A rubbery, polyurethane sealant in various colors with adhesive properties sometimes used as a glue. Fails as a glue under water saturation without high clamping pressure, and without the proper strength testing I couldn’t do here, it’s not recommended as a stand-alone marine glue. Repairable with epoxy.

Liquid Polyurethane: Gorilla Glue, Elmer’s Probond, Elmer’s Ultimate, and others. Versatile in temperature and bonding wet wood with moderate open time, these glues aren’t rated for below waterline use but initial use shows potential as a marine glue. Likes high clamping pressure and fits similar to resorcinol…it won’t fill gaps. Will successfully glue green wood at 30% EMC, but the wetter the wood, the weaker the bond. Repairable with epoxy. Noticeable, yellow-brown glue lines.

PL Premium Construction Adhesive: This polyurethane goo shows promise as a marine glue with further testing and use. Works like 3M 5200 but cures and behaves like liquid poly. Appears to bond well to everything epoxy does, and more where epoxy and liquid poly won’t, perhaps because of a higher isocyanate content…it bonds to difficult surfaces only cyanoacrylate super glues will bond to. The only general-use glue I’ve found that will bond difficult aliphatic-contaminated surfaces. Appears flexible to temperature and moisture content with gap-filling ability, but as a construction adhesive, its open time is shorter than liquid poly. Appeared to like high clamping pressure, and unlike other glues, wouldn’t bond at all without at least some. Repairable with itself and epoxy. Glue line as in liquid poly.

Urea Formaldehyde Plastic Resin Glue: Weldwood, DAP and others. The old interior furniture standard, and in older marine applications that required well-blended glue lines. Still preferred by many, as it is a no-creep glue easily repaired using epoxy. Long open time, it needs tight fits and 65 degrees F or higher for an overnight cure…it doesn’t fill gaps. Best glue line among them all and moderate water resistance still make it useful for interior marine brightwork applications. A relatively brittle glue and UV sensitive, it requires protection….but its brittleness is an aid to repairability, as joints can often be broken apart for repair. An inexpensive powder with a short, one-year shelf life.

The Titebond Family of Aliphatics: Convenient. No mixing, just squeeze. Short open times, fast tack, and short clamping times. Fast, and an excellent layup glue…in heated, commercial shops, I’ve had rough-cut Titebond panel layups in and out of the clamps and thru the planer inside of an hour. Flexible in temperature and to a lesser extent in moisture content, but the bottled glue can freeze in unheated shops, and glueups require 55 degrees or warmer to cure. A flexible glue, it has been reported to creep under load, sometimes several years after the joint was made. The latest “Titebond III” appears to be a stronger glue than its two predecessors. Difficult glues to repair, as they won’t stick to themselves and no other glues will except cyanoacrylates, which are too brittle for general use. Epoxy and fabric aren’t bonding to aliphatic glue lines in marine strip construction, compounding repair difficulties. While not definitive, the new PL Premium appears to bond well to Titebond III residue and is worth pursuing by those repairing old white and yellow aliphatic joints.